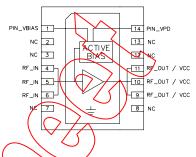


Product Features

- 3.3 3.8 GHz
- +39 dBm P1dB
- www.deta2hdB4Gainm
 - 2% EVM @ 30 dBm Pout
 - +12 V Supply Voltage
 - Lead-free/RoHS-compliant 5x6 mm power DFN package

Applications

WiMAX CPE/BTS


Product Description

The AP562 is a high dynamic range broadband power amplifier in a surface mount package. The single-stage amplifier has 12 dB gain, while being able to achieve high performance for 3.3-3.8 GHz WiMAX applications with up to 39 dBm of compressed 1dB power.

The AP562 uses a high reliability +12V InGaP/GaAs HBT process technology. The device incorporates proprietary bias circuitry to compensate for variations in linearity and current draw over temperature. The device does not require any negative bias voltage; an internal active bias allows the AP562 to operate directly off a commonly used +12V supply and has the added feature of a +5V power down control pin. RoHS-compliant 5x6mm DFN package is surface mountable to allow for low manufacturing costs to the end user.

The AP562 is targeted for use in a balanced or single ended configuration for WiMAX applications where high linearity and high power is required.

Functional Diagram

Specifications

_ \
\searrow
\searrow
\sum
-)~
_

Notes:

1. Test conditions unless otherwise noted: T = 25°C. Vpd + 12. Icg = 400mA at Pout = +30 dBm and f = 2.6 GHz.

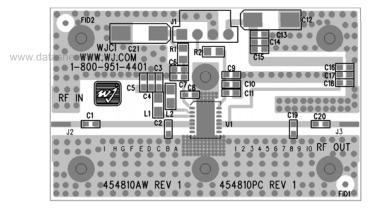
- Using an 802.16-2004 OFDMA, 64QAM-1/2, 024-FFT, 20 symbols, 30 subchannels signal
- Switching speed: 50% TTL to 100/0% RF. Vpd used for device power down. (low=RF dff) 3
- 4.
- GHŁ, P 5. Capable of handling 10:1 VSWR @ 12 Vot 30dBm

Maximum Rating Absolute

Parameter	Rating
Pin max (CW into 50Ω load)	+33 dBm
Storage Temperature	-55 to +125 °C
Max Junction Temperature, T _{J,max}	192 °C
Thermal Resistance, Θ_{JC}	8.7 °C / W

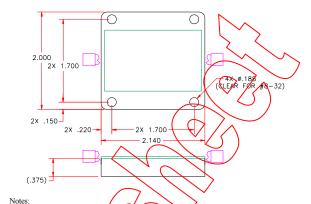
Operation of this device above any of these parameters may cause permanent damage

Ordering Information


Part No.	Description
AP562-F	WiMAX 12V 8W HBT Amplifier
AP562-PCB3500	3.4-3.6 GHz Fully Assembled Evaluation Board

Standard T/R size = 500 pieces on a 7" reel

Specifications and information are subject to change without notice



Application Circuit PC Board Layout

Circuit Board Material: 0.0147" Rogers Ultralam 2000, single layer, 1 oz copper, $\varepsilon_r = 2.45$, Microstrip line details: width = .042", spacing = .050"

Baseplate Configuration

- Please note that for reliable operation, the evaluation board will have to be mounted to a much larger heat sink during operation and in laboratory environments to dissipate the power consumed by the device. The use of a convection fan is also recommended in laboratory environments.
- The area around the module underneath the PCB should not contain any soldermask in order to maintain good RF syounding.
- 3. For proportion are operation in the aboratory, the power-on sequencing is recommended.

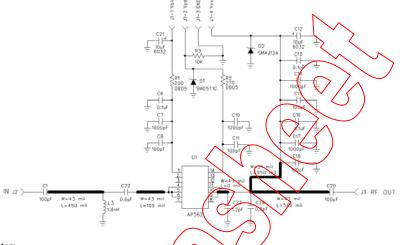
Evaluation Board Bias Procedure

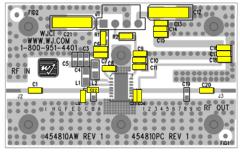
Following bias procedure is recommended to ensure proper functionality of AP601 in a laboratory environment. The sequencing is not required in the final system application.

	$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Bias.	Voltage (V)
Vcc	+12
Vbias	+12
Vpd	+5

Turn-on Sequence:

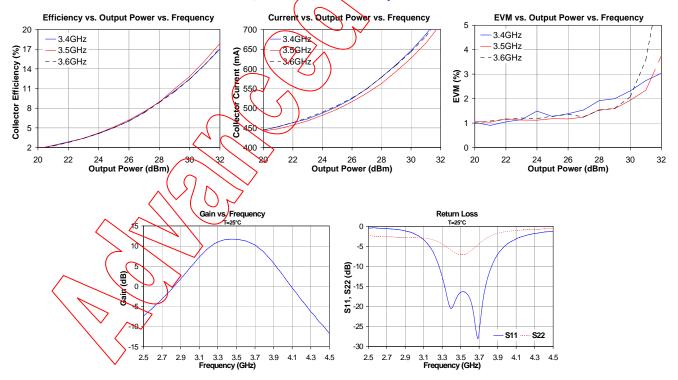
- 1. Attach input and output loads onto the evaluation board.
- 2. Turn on power supply Vcc = +12V.
- 3. Turn on power supply Vbias = +12V.
- 4. Turn on power supply Vpd = +5V.
- 5. Turn on RF power.


Turn-off Sequence:


- 1. Turn off RF power.
- 2. Turn off power supply Vpd = f5V.
- 3. Turn off power supply Vbias +12V.
- 4. Turn off power supply Vcc +12V

3400-3600 Application Circuit (AP562-PCB3500)

Typical O-FDM	A Perf	ormai	nce at	25°C				
Frequency (MHz)	3400	3500	3600	Units				
Channel Power	+30	+30	+30	dBm				
Power Gain	12	12	11	dB				
Input Return Loss	15	14	15	dB				
Output Return Loss	6.1	6.8	5.7	dB				
EVM	2.3	1.9	2.1	%				
Operating Current, Icc	646	627	643	mA				
Collector Efficiency	12.5	13	12.5	%				
Output P1dB	39	39	39	dBm				
Quiescent Current, Icq		400		mA				
Vpd		+5		V	RF IN J2 >			_
Vcc, Vbias		+12		V	,	100pF	W=43 mîl L=450 mîl	3L3 31.8nH
-								Ĺ

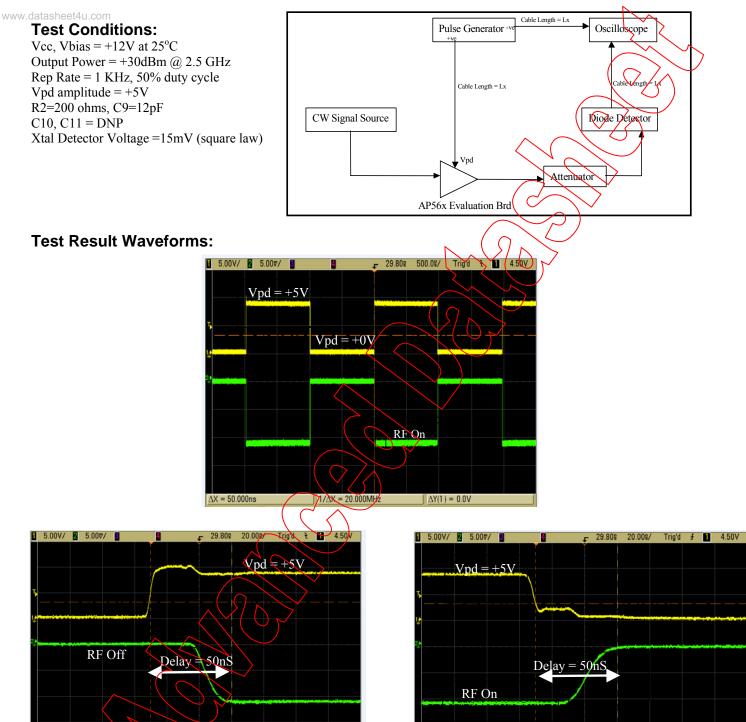


W

Notes:

- The primary RF microstrip line is 50 Ω
 Components shown on the silkscreen but not on the schematic are not used.
- The center of C23 is placed at 15mil from AP562 RFout pin. 3.
- 4. The edge of C24 is placed right next to C23
- The center of C22 is placed at 135mil from AP562 RFin pin. 5.
- 6. The edge of L3 is placed right next to C22.

3400-3600 MHz Application Circuit Performance Plots 802.16-2004 O-FDMA, 64QAM-1/2, 1024-FFT, 20 symbols and 30 subchannels



Specifications and information are subject to change Without notice

Parameter Measurement Information

Switching Speed Test

∆X = 50.400ns

Mode Normal Source

Specifications and information are subject to change Without notice

X1 -400ps

1/∆X = 19.841MHz

X Y

X1 -400ps $\Delta Y(1) = 0.0V$

€) X2 50.000n

X1 X2

1/AX = 19.841MHz

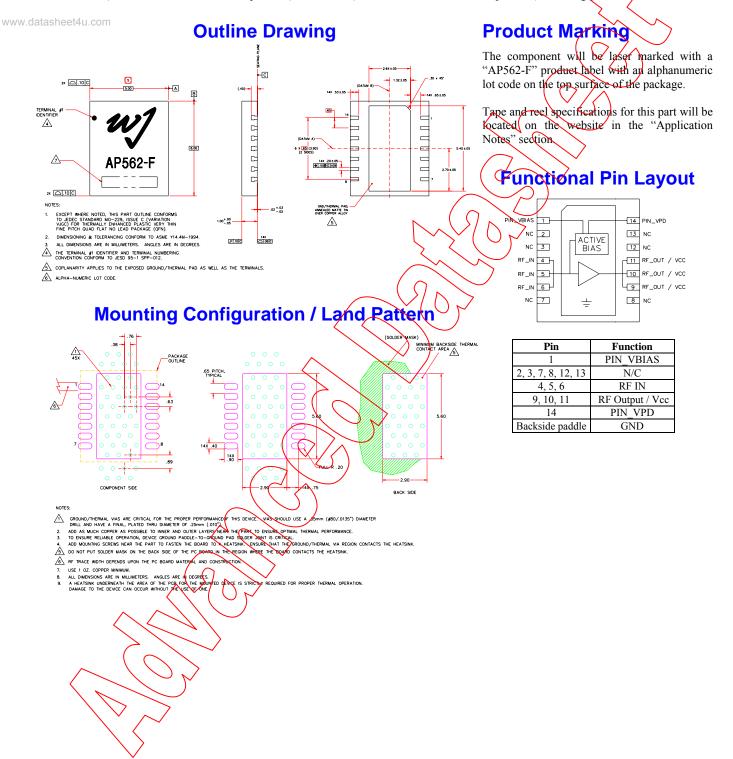
Y

 $\Delta X = 50.400$ ns

Mode
 Normal

Source

 $\Delta Y(1) = 0.0V$


€ X2 50.000ns

X1 X2

Mechanical Information

This package is RoHS-compliant. The plating material on the pins is annealed matter tin over copper. It is compatible with both lead-free (maximum 260 °C reflow temperature) and leaded (maximum 245 °C reflow temperature) soldering processes.

